Aerobic degradation of mixtures of chlorinated aliphatics by cloned toluene-o-xylene monooxygenase and toluene o-monooxygenase in resting cells.

نویسندگان

  • H Shim
  • T K Wood
چکیده

Recombinant strains of Escherichia coli constitutively expressing toluene-o-xylene monooxygenase (ToMO) of Pseudomonas stutzeri OX1 and toluene o-monooxygenase (TOM) of Burkholderia cepacia G4 were investigated for their ability to oxidize trichloroethylene (TCE), 1,1-dichloroethylene (1,1-DCE), cis-1,2-dichloroethylene (cis-DCE), trans-1,2-dichloroethylene (trans-DCE), vinyl chloride (VC), and chloroform (CF), individually as well as in various mixtures. ToMO oxidized all of these individual compounds well, whereas TOM did not degrade VC significantly (16-fold less) and degraded cis-DCE and trans-DCE less well (3.7- and 2.4-fold, respectively). For mixtures of these chlorinated aliphatics, ToMO was again more robust than TOM. For example, in binary mixtures including TCE, ToMO degraded all three DCE isomers and CF, but the presence of TCE inhibited VC degradation; TOM degraded both TCE/1,1-DCE and TCE/trans-DCE, but not cis-DCE for TCE/cis-DCE, and the addition of CF or VC to TCE completely inhibited degradation of both compounds and TCE. The addition of CF or trans-DCE stimulated VC degradation in the presence of TCE for ToMO, and the addition of any of the three DCE isomers stimulated VC degradation for TOM. Significant degradation of all ternary mixtures of TCE and less chlorinated ethenes, as well as a mixture of TCE, three DCEs, and VC, was achieved with ToMO (but not TOM). In mixtures of these chlorinated compounds, degradation was found to occur simultaneously rather than sequentially, and the mineralization of many of these compounds could be confirmed through detection of chloride ions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of the gene cluster encoding toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1.

The toluene/o-xylene monooxygenase cloned from Pseudomonas stutzeri OX1 displays a very broad range of substrates and a very peculiar regioselectivity, because it is able to hydroxylate more than one position on the aromatic ring of several hydrocarbons and phenols. The nucleotide sequence of the gene cluster coding for this enzymatic system has been determined. The sequence analysis revealed t...

متن کامل

Metabolic pathway engineering to enhance aerobic degradation of chlorinated ethenes and to reduce their toxicity by cloning a novel glutathione S -transferase, an evolved toluene o -monooxygenase, and g -glutamylcysteine synthetase

Received 30 July, 2003; revised 26 November, 2003; accepted 19 December, 2003. *For correspondence. E-mail [email protected]; Tel. ( + 1) 860 486 2483; Fax ( + 1) 860 486 2959. Metabolic pathway engineering to enhance aerobic degradation of chlorinated ethenes and to reduce their toxicity by cloning a novel glutathione S -transferase, an evolved toluene o -monooxygenase, and g -glutamylcyste...

متن کامل

Identification of the Pseudomonas stutzeri OX1 toluene-o-xylene monooxygenase regulatory gene (touR) and of its cognate promoter.

Toluene-o-xylene monooxygenase is an enzymatic complex, encoded by the touABCDEF genes, responsible for the early stages of toluene and o-xylene degradation in Pseudomonas stutzeri OX1. In order to identify the loci involved in the transcriptional regulation of the tou gene cluster, deletion analysis and complementation studies were carried out with Pseudomonas putida PaW340 as a heterologous h...

متن کامل

Oxidation of trichloroethylene, 1,1-dichloroethylene, and chloroform by toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1.

Toluene/o-xylene monooxygenase (ToMO) from Pseudomonas stutzeri OX1, which oxidizes toluene and o-xylene, was examined for its ability to degrade the environmental pollutants trichloroethylene (TCE), 1, 1-dichloroethylene (1,1-DCE), cis-1,2-DCE, trans-1,2-DCE, chloroform, dichloromethane, phenol, 2,4-dichlorophenol, 2,4,5-trichlorophenol, 2,4,6-trichlorophenol, 2,3,5,6-tetrachlorophenol, and 2,...

متن کامل

Effects of iron limitation on the degradation of toluene by Pseudomonas strains carrying the tol (pWWO) plasmid.

Most aerobic biodegradation pathways for hydrocarbons involve iron-containing oxygenases. In iron-limited environments, such as the rhizosphere, this may influence the rate of degradation of hydrocarbon pollutants. We investigated the effects of iron limitation on the degradation of toluene by Pseudomonas putida mt2 and the transconjugant rhizosphere bacterium P. putida WCS358(pWWO), both of wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biotechnology and bioengineering

دوره 70 6  شماره 

صفحات  -

تاریخ انتشار 2000